Something mysterious – the world of mathematics

By | February 11, 2026

The Mathematics of the Mandelbrot SetThe Mandelbrot set is a famous example of Chaos Theory and fractal geometry.

zn+1=zn2+cz_{n+1} = z_n^2 + c

Python code for the Julia Set

Python Implementation for Julia Set

This script generates a classic, aesthetically pleasing Julia set using

c=0.7+0.27015jc = -0.7 + 0.27015j

import numpy as np
import matplotlib.pyplot as plt

def generate_mandelbrot(h, w, max_iter=100):
    """
    Computes the Mandelbrot set.
    h, w: Resolution of the image
    max_iter: Maximum number of iterations
    """
    # Define the complex plane range (Real: -2.0 to 0.8, Imaginary: -1.4 to 1.4)
    y, x = np.ogrid[-1.4:1.4:h*1j, -2:0.8:w*1j]
    c = x + y*1j
    z = c
    # Array to keep track of the iteration count when a point diverges
    divtime = max_iter + np.zeros(z.shape, dtype=int)

    for i in range(max_iter):
        z = z**2 + c
        # Check for divergence (absolute value > 2)
        diverge = z * np.conj(z) > 2**2            
        div_now = diverge & (divtime == max_iter)  # Points diverging for the first time
        divtime[div_now] = i                       # Record the iteration number
        z[diverge] = 2                             # Avoid overflow issues

    return divtime

# Configuration
width, height = 1000, 1000
max_iter = 100

# Generate the set
mandelbrot_set = generate_mandelbrot(height, width, max_iter)

# Plotting with matplotlib
plt.figure(figsize=(10, 8))
plt.imshow(mandelbrot_set, extent=[-2, 0.8, -1.4, 1.4], cmap='magma')
plt.title('Mandelbrot Set Visualization')
plt.xlabel('Re(c)')
plt.ylabel('Im(c)')
plt.colorbar(label='Iterations until divergence')

# Show the result
plt.show()